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Chapter 1
Introduction

1.1 Minimally Invasive Surgery (MIS)

Minimally Invasive Surgery (MIS) is a common surgical procedure decreasing the required size
of skin and subcutaneous tissue incisions [1]. MIS is gaining prominence in the medical domain,
replacing various surgical procedures once requiring larger-scale open surgery such as
prostatectomy and hysterectomy [2]. While it may be more challenging to visualize the inside of
a patient’s body through incisions spanning centimeters, numerous benefits can be noted from
using smaller incisions than would otherwise be used in conventional open surgery. The use of
smaller incisions allows a faster recovery time, less scarring, and a lower probability of
postoperative complications [3].

1.2 Robot-assisted Surgery

Laparoscopic surgery consists of manually inserting an endoscope and compact surgical tools
through a small incision on the patient’s skin to visualize the organs on an external monitor
[4][5]. However, a counter-intuitive psychomotor challenge is introduced, as the surgeon’s
movements external to the patient’s body result in the opposite maneuver being executed at the
other end of the tool, with the incision acting as the point of rotation known as the fulcrum

[61[7].

Robotics and telerobotics are an emerging advancement in the field of MIS, offering solutions to
the lingering pitfalls of manual laparoscopic surgery [8]. Robot-assisted Surgery (RAS)
introduces the use of computer-based robotic surgery to mitigate the limitations of the range of
motion of the tools and endoscope control [8][5]. The instruments are held by a robot regulated
by an external surgical console teleoperated by the surgeon, improving the poor ergonomics of
lengthy or complex surgeries. Such a setup provides a more intuitive manner of manipulating
the tools by offering a wrist-like motion and inversing the external controls programmatically to
counter the fulcrum effect [9]. The robotic manipulators also facilitate accessing remote and
difficult locations such as within the thoracic cavity during thymectomy surgery. Despite the
numerous benefits that RAS has brought to modern surgical medicine, advanced teleoperated
surgical techniques remain a dexterity challenge regardless of the surgeon’s experience.

1.2.1 The da Vinci Surgical Robot

The da Vinci Research Kit (dVRK) developed by Intuitive Surgical Inc. [10] is an advanced
master-slave platform with multiple robotic arms and manipulators remotely controlled by a
console and a surgeon. Designed to provide surgeons with a greater level of dexterity, the da
Vinci Surgical System provides seven degrees of freedom and a stereoscopic view at the tip of
the endoscope [11][12].

The first-generation da Vinci Surgical System consists of three 7-DOF actuated Patient Side
Manipulators (PSMs), one 4-DOF Endoscopic Camera Manipulator (ECM), and two Master Side
Manipulators (MTMs). Each PSM manipulator of the da Vinci enters the body through an



incision acting as the fulcrum, constraining the motion akin to a spherical joint moving about a
Remote Center of Motion (RCM) [11].

As the demands of manually tele-operating multiple robotic arms at the console remain a
multi-tasking and dexterity challenge, there is an opportunity for automation to further improve
the flow of surgical operations. In addition to controlling up to three PSMs at once, the surgeon
must also accurately position the ECM for uninterrupted visual feedback of the tools [6]. While
research has been conducted on the automation of various robot systems, the use of motion
planning with the da Vinci robot in a surgical context is relatively new and requires further
research and assessments before being safely practiced in surgery.

1.3 Motivation

The addition of a fully intelligent and automated system is one of many recent advancements in
robotic surgery research [13]. Attempts to leverage the autonomous capabilities of multi-arm
robots have been made by exploring the parallelism capabilities in developing execution models
for surgical debridement [14] and multi-throw suturing sub-tasks. The concept of parallelism
relies on the design of coordinated state machines to control the movement of manipulators in
coupled or decoupled-motion sub-tasks [15]. Although robotic manipulators can be automated
in parallel by coordinating their state machines, such a model may lack flexibility and
responsiveness in a dynamic environment. Multi-arm robot automation in simple surgical
sub-tasks with the da Vinci Surgical Robot may be optimized with the complement of motion
planning.

The automation of surgical robots for integrated tasks introduces many challenges such as the
avoidance of static and dynamic obstacles [16][17]. Furthermore, deadlocks are a known
occurrence in concurrent systems requiring the use of mutually exclusive resources [18], and
must be reliably detected and solved if a solution exists. As RAS involves a variety of different
operations and manipulator movements, an extensive motion planning and collision avoidance
framework would be needed to adapt to a variety of automated tasks and edge cases. The
integration of motion planning and a dynamic collision avoidance method into autonomous
multilateral task execution could improve task efficiency while conserving the parallelism aspect
of the robotic system.

1.4 Objective

This thesis focuses on the development of an integrated task and motion planning (TMP)
strategy for a multilateral automated model, providing a flexible task coordination approach in a
dynamic environment. TMP is known as the problem of planning the actions of robots moving
through an environment containing a number of objects, while changing the state of the
environment or objects [19][16]. Motion planning will be implemented to generate a
collision-free path for each PSM moving towards a point of interest. The position and range of
each individual arm will also be tracked in order to avoid possible collisions using a Velocity
Obstacle approach. The main idea of this approach is to compute collision-avoiding velocities
with respect to other robots, such that each robot may continue on their path without changing
their initial trajectory. The objectives of this work concern identifying and handling collisions
with the static environment obstacles and potential collisions with PSMs dynamically without
impeding the parallelism aspect of the robotic arm movements.



Chapter 2

Related Work

The integration of a motion planning mechanism in autonomous robotic surgery aims to
improve the robustness of a task planning model by preventing robot self-collisions as well as
robot collisions with the surgical environment. An effective multi-arm motion planner and
coordination framework should be scalable, cooperative, and adaptable to multiple purposes
[20]. Trajectories should be planned such that one arm does not impede the motion of another
by colliding or blocking their target.

In this section, we examine previous work in multi-robot coordination, task planning, and
motion planning algorithms in centralized and decentralized systems. Static and dynamic
coordination methods are considered to formulate an optimal integrated task and motion
planning framework. Collision avoidance methods are explored to integrate a dynamic
avoidance mechanism suitable for a multi-arm robot system such as the da Vinci Surgical Robot.

2.1 Parallelism in Multilateral Automation

The concept of parallelism is used to leverage the capability to automate tasks in multilateral
systems [15]. Multilateral execution models in which each robotic arm contributes to one or
more tasks can be used to compare the efficiency of parallel and sequential execution methods.
Previous work including the use of sequential models involve a single arm moving at once while
blocking other arms from functioning until its individual motion is complete [21]. As sequential
logic is single-minded, non-concurrent models often show a lack of performance during
time-sensitive surgical tasks. Having the flexibility to be used in different configurations than
what would be expected from a surgeon, concurrent multilateral models may alternatively be
used to optimize task efficiency.

Abdelaal et al. demonstrate the concept of parallelism for the execution model of
coupled-motion subtasks, in which multiple arms share the same resources, and
decoupled-motion subtasks, where multiple arms execute a subtask independently from one
another [15]. The concurrency of state machines in robotic subtasks with the da Vinci Robot
allows two arms to move independently and in parallel using identical state machines to
complete a debridement subtask more efficiently. It is observed that without a coordination or
inter-arm communication model, the arms often collide over the receptacle due to the
coupled-motion task and mutual-exclusive nature of the resource [15]. This case demonstrates
the convenience of using a hierarchical structure to coordinate the individual state machines in a
coupled-motion subtask, in which arms are expected to share resources without collision.

A Hierarchical Concurrent State Machine (HCSM) parallel execution model is proposed for
coordinating manipulators and resource acquisition for a surgical debridement subtask with the
two-arm da Vinci Surgical Robot. HCSMs possess multiple sub-state machines functioning
concurrently coordinated using a “master” state machine or controller, allowing the system to be
present in multiple states at once [22]. Ahmad et al. supports that using a hierarchical structure
to coordinate and organize concurrent state machines permits behaviors to be grouped
systematically. The act of encapsulating the logic of a single aspect in one state machine, such as
picking up an object, simplifies the development, scaling, and validation of complex systems



[22][23]. Using external motion planning solvers and sampling, Wolfe et al. present a
hierarchical planning system modeling primitive actions and representing finite continuous
choices using a sampling based approach [20]. Reliability and failures are handled within the
primitive actions on different levels of the hierarchy. Such a system increases the robustness of
the hierarchical system such that an optimal plan can be found by exhaustive search.

While hierarchical structures offer a structured method of coordination for the robot and
resources under optimal conditions, the collision avoidance mechanism remains only by design,
and may not be as robust in a dynamic environment in which robotic arm workspaces overlap.
Collision avoidance by design is less adaptive and not easily scalable to environment changes or
additional arms, as additional state machines would need to be integrated in the controller. This
suggests the possibility that if refined with a concrete dynamic collision avoidance method,
concurrent state machine models, whether un-coordinated or hierarchical, could function with
even more efficiency than an HCSM execution model.

2.2 Multi-Robot Coordination in Task Planning

One of the main challenges of coordinating the movements of multiple dynamic objects is
maneuvering within the workspace without colliding with the static environment or other
dynamic arms during the execution of a task. To simplify the problem, we may consider each
mobile robotic element in the workspace as a single robot entity, together forming a Multi-Robot
System (MRS) [24]. A MRS is defined as containing more than a single robot in a specified
environment and may operate in cooperative or competitive behaviours. Within a surgical
environment, the system works cooperatively as multiple manipulators interact together in
order to complete a surgical subtask with the common goal of improving the system’s outcome
[24][25][26]. Typical issues relating to the task planning and coordination aspect of a
cooperative MRS include resource conflicts, dynamic coordination, and robot communication
mechanisms to avoid collisions dynamically.

This section describes the tradeoffs between static and dynamic coordination, and centralized
and decentralized planners. An overview of common problems found in concurrent robotic
systems is given, including resource conflicts and deadlocks.

2.2.1 Resource Conflict

The resource conflict problem is defined as a situation in which multiple robots attempt to
access the same space or object in the event that their workspaces overlap. In order to prevent
collisions, the mutual exclusiveness of resources and individual points in space should be
preserved [24]. For instance, during a surgical debridement subtask with the da Vinci Surgical
Robot, a resource conflict is encountered. The receptacle in which damaged tissue is dropped
shown in Figure 2.2.1 is only large enough to allow a single PSM to access the resource at once
without collision with other manipulators.



Figure 2.2.1: Trilateral tissue debridement task with the da Vinci Surgical Robot. Two PSMs wait
until a PSM leaves the bowl, avoiding potential collisions at the bowl.

In a multi-arm robot system, the coordination of arms accessing a resource can be managed as a
hierarchical model using a master centralized FSM. This case demonstrates the use of priority
schemes and collision avoidance by design using a centralized machine to coordinate the entire
system’s actions. Chen et al. present a learning classifier based on dynamic allocation of priority
methods to improve the performance of a MRS [27]. A high level hierarchical planner is
introduced to resolve conflicts by assigning priority to individual robots. Using a priority scheme
to determine which agent gets the right of way in accessing a resource has been shown to be
effective in the resolution of inter-agent conflicts [27][28][29]. However, fixed priority schemes
do not adapt well to different tasks and environments as they do not take individual robot task
goals and constraints into account. A flexible framework assigning priority dynamically or using
a reward based system may be a better fit in a dynamic MRS system. Similarly, Abdelaal et al
bypass the space conflict in a surgical debridement subtask by controlling each PSM of the da
Vinci Robot using FSMs dictating different states such as picking, waiting, and dropping [15].
This allows the use of a resource sequentially using a deterministic coordination model,
protecting the mutual exclusivity of the receptacle.

Introducing the concept of inter-robot communication as a solution to the resource conflict
problem, Marcolino and Chaimowicz propose a decentralized coordination algorithm in which a
MRS traffic is controlled by managing congestion as groups of robots move towards a common
goal location [30]. The algorithm uses a probabilistic FSM to coordinate their own path by
relying on local sensing and communication to warn their teammates about possible collisions,
following which, robots are able to re-plan their individual paths to avoid clustering in one
space. As opposed to previously stated fixed methods, each robot path is dynamically dependent
on another’s movements rather than restricted by a predetermined centralized source [31][32].

The use of a decentralized algorithm in conjunction with a method of inter-robot
communication would be a flexible approach to the resource conflict problem in a dynamic
environment. In this case, a robust decision making algorithm for each individual robot would
be required to interpret and form decisions based on the implicit data collected from the
environment.



2.2.2 Deadlocks

In an MRS, deadlocks are a state of equilibrium of system dynamics causing the robots to come
to a stop before completing their task [18]. For instance, in the case of a tissue debridement
surgical subtask executed by two manipulators, deadlocks would occur if a manipulator blocks
the second in a way such that neither of them is able to continue along its trajectory without
colliding.

As deadlocks are a well-known concept in concurrent systems, multiple methods of deadlock
resolutions exist, although their suitability depends on the type of system implemented
[18][33]. Alonso-Mora et al. present a method for motion planning applying to groups of robots
performing tasks in a dynamic environment such as room exploration [34]. The approach is
centralized for robots in the team and decentralized with respect to moving obstacles, meaning
that robots are only required to measure the position and velocity of dynamic obstacles within a
local range to solve the deadlock [34]. The proposed approach automatically generates
alternative valid plans. However, due to the dynamic nature of some integrated tasks, there may
exist no plan that guarantees the task’s success [35][36]. Therefore the approach first identifies
for which environment behaviour the plan is guaranteed to succeed, before replanning
trajectories using local environment information. Nett and Schemmer coordinate the access to
shared physical resources and deadlock resolution by enabling real-time explicit communication
between robots about their trajectory [37]. By scheduling shared space and resource access and
the intersection of their paths, dynamic robots can cross paths without collision. In the case of
deadlock, robots would organize and communicate the deviation of their individual trajectories.
The use of explicit communication as a means of information sharing between robots ensures
the accuracy of the environment information between robots [37][33].

Jager and Nebel present a decentralized coordination method to avoid deadlocks and potential
collisions in a MRS by coordinating independently planned paths of the members [33]. As
centralized approaches are computationally demanding, inflexible, and rely on a global
communication network, distributed algorithms are used to limit communication to local pairs
of robots [37]. The algorithm consists of tracking the distance between robots and triggering an
exchange of information about their trajectories when the minimum distance drops below a
certain threshold. In the case of deadlock, individual path planners detect the event by time
elapsed since last movement, and re-plan their trajectory until the deadlock is resolved. This
method demonstrates the use of conditional communication as the vehicle’s trajectory
information is only broadcasted once within a certain radius of another, allowing a conditionally
explicit system to be formed [38][39]. The robots do not use any global synchronization nor do
they interfere with each other, resulting in an adaptive coordination framework reactive to
deadlocks, with lower communication demands.

2.2.3 Static and Dynamic Coordination

Multi-robot coordination is the core element of task planning and collision avoidance in a MRS.
Coordination can be categorized as static or dynamic. Static coordination manifests as a
predetermined set of rules or conventions designated prior to the start of the task execution
[24]. Examples of such include controlling mobile robots by applying “traffic rules”. Kato et al
apply traffic rules to a MRS, restricting the range of allowed movement using known
environment information and information on the mobile robots, such as speed, size, shape and



quantity [40]. Collisions are avoided by setting rules and countermeasures for positions at risk
of collisions, or restricting the range and directions of movements accordingly. Enforcing traffic
rules to coordinate individual robots allows for a simple static system, such that the system does
not need any form of inter-robot communication [40][41].

While static coordination has the advantages of fast and efficient computation times for complex
tasks, it may perform poorly in real-time systems due to the non-deterministic nature of moving
objects in the workspace. Once a motion is initiated, the robot will not respond to subsequent
changes in the environment as a trajectory has already been computed according to the set
traffic rules. Dynamic coordination provides a more accurate solution to real-time environments
by enabling communication between robots [24][42]. An MRS may exchange information such
as position and trajectory, or implicitly deduce such information using sensors, before taking
adequate measures in order to prevent possible collisions from occurring [30]. This process
describes the use of explicit inter-robot communication, further discussed in Section 2.2.3.

Dynamic coordination meets the demands of a real-time environment, providing adaptive
solutions to late environment transitions, but may behave unreliably in complex systems,
resulting in longer computation times or deadlocks. An example of this case in a tissue
debridement simulation would be when an arm in a dropping state, attempts to move to a
different location, but is blocked by a second arm wanting to drop an object in the bowl, and
cannot compute a path without collision. The second arm cannot access the resource as the first
is using it, and the first arm cannot leave the resource, as the second arm is blocking its path. In
this case, arms are in a stale-mate and may remain unable to move until another condition clears
the situation. Deadlocks occur in concurrent systems between one or more robots when one
blocks the other from accessing the same resource such that no solution to the problem can be
found [33]. The deadlock must reliably be detected and resolved, often by altering the timing of
the robots or resetting the system. In an ideal system, deadlocks are a rare occurrence and
measures to solve deadlocks are used as a last resort [33][43][44]. While deadlocks are a rare
occurance in a robust system, a deadlock resolution algorithm should nonetheless be
implemented to handle such instances by resetting or altering the timing of the system. A hybrid
model can be further explored, employing static coordination when modeling an integrated task
planning system to set basic rules, while handling real-time dynamic collisions by broadcasting
the trajectory of the robots involved in the potential collision as incidents arise.

2.2.4 Summary

This section explored the multiple challenges and considerations of multi-robot coordination in
a dynamic environment. The resource conflict problem was defined as a situation in which
multiple robots attempt to access the same space or object in the event that their workspaces
overlap. In order to prevent collisions, the mutual exclusiveness of resources and individual
points in space should be preserved [24]. Deadlocks in an MRS context were defined as the state
in which robots block each others’ paths, preventing each other from completing their assigned
task. A flexible approach to resource conflict and deadlock problems in a dynamic environment
is the use of a decentralized algorithm in conjunction with an implicit inter-robot
communication. In this case, a robust decision making algorithm for each individual robot would
be required to interpret and form decisions based on local environment and robot data.
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The core elements of task planning and collision avoidance were described as static or dynamic
coordination. Static coordination is most commonly implemented as a predetermined set of
conventions such as “traffic rules” to manage the traffic flow of robots through an intersection
[40]. While offering fast and efficient computation times, static coordination may perform
poorly in real-time systems due to unpredictable behaviours. Dynamic coordination can be used
to provide an adaptable solution to real-time environments by enabling communication
between robots. This allows an exchange of information between robots such as position and
trajectory, after which individual robots may make appropriate decisions to avoid an imminent
collision. A hybrid static and dynamic coordination model can further be explored as a means to
handle real-time dynamic collisions while employing static coordination to set basic rules for
the environment.

However, coordination in a MRS often implies the risk of deadlocks [33]. While deadlocks are a
rare occurance in a robust system, a deadlock resolution algorithm should nonetheless be
implemented to handle such instances by resetting or altering the timing of the system.

Static and dynamic coordination algorithms may be used individually or strengthened with an
implicit or explicit communication method. However it is important to note that the complexity
of the system increases with the number of components being integrated. When used in a
moderate and controlled manner, inter-robot communication may complement a dynamic
coordination model to form a robust task coordination system.

2.3 Centralized and Decentralized Motion Planners

2.3.1 Centralized Planners

The decision-making aspect of motion planners can be centralized or decentralized according to
the architecture of the cooperative system. Being the most common type of motion planners,
centralized planners benefit from a shared access to data from the entire robot system
[45][46][47]. A central control agent in a centralized system architecture uses environment
information as inputs in order to make coordination decisions and calculate trajectories for all
robots within the system. Optimal plans can be generated using a global analysis of the
centralized system architecture.

One of the first centralized architectures used in a MRS is the GOFER project [46], in which a
centralized task scheduling system possessing global access to the environment controls the
operation of several robots at once. The system integrates a task planning system to derive
action plans from specified tasks and a task allocation framework to allocate certain tasks to
robots. The GOFER robot system is only adapted to basic smaller-scale vehicular tasks such as
box pushing and exploration [46]. The model would benefit from the development of an
architecture triggering communication acts to coordinate more complex cognitive activities in
the robot system.

Sanchez and Latombe describe experiments with a Probabilistic Roadmap Planner (PRM) in a
welding setting with multiple robot manipulators performing centralized planning [48]. The
model considers all robots as if they form a single multi-arm robot, by encoding all combined
DOFs in a single configuration space. A collisionless path is found using the sampling-based PRM
algorithm by searching the space for a free path between initial and goal manipulator
configurations [49]. However computation times can be high due to the complexity of searching
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for a valid configuration for each individual joint of the robot arms in a combined space with
dozens of dimensions. The joint limits and range of each manipulator must be tightly restricted
to the workspace to minimize the calculation time required.

Kehoe et al. use the Raven surgical robot in a centralized system to conduct the autonomous
execution of a two arm robotic surgical debridement subtask [17]. The planning of the two
robotic arms are coordinated in a centralized manner using a single 12 DOF planner rather than
two 6 DOF planners for each arm. Therefore, a sophisticated optimization-based motion
planning method is needed to meet the requirements of arm coordination in the centralized
system. Using a Model Predictive Control (MPC) approach, the trajectory of each arm is
replanned frequently to deal with the large kinematic uncertainty. Locally-optimal, collision-free
trajectories are calculated simultaneously using Trajopt, a low-level motion planning algorithm
[50]. After a change in target pose, each arm’s motion is replanned by processing the target pose
from each individual arm such that the centralized planner plans for both arms simultaneously
[17]. Other studies involving a centralized architecture approach include [46][51][52]. As the
planner must wait until it has received requests from both arms to replan before computing one
arm'’s trajectory, the planning mechanism may be delayed until the other arm completes its plan.
While this method allows collisionless trajectories to be replanned frequently using updated
pose estimates, the parallelism aspect of the system is not conserved as one arm must wait for
the other to complete its trajectory before activating the planner. A decentralized system could
be explored in which trajectories are planned individually using the same MPC approach and
coordinated dynamically by inter-robot communication, such that no additional planning delays
are introduced in the coordination algorithm.

2.3.2 Decentralized Planners

The lesser used decentralized planner is treated as a multi-agent or multi-robot system with
each robot arm controlled by its individual planner, receiving limited data from the system’s
state[45][53]. These individual motion planners only compute their own trajectory. A
decentralized control structure is demonstrated by Khatib et al. in which objects of the task are
represented as individual tasks for each cooperative robot [54]. Local feedback control loops are
developed at grasp point and the design of controllers are created using augmented object and
virtual linkage models. Virtual Linkage concerns the manipulation of a single resource by control
of the internal forces in a multi-grasp manipulation model. The model connects grasp points in a
set of virtual links with independent internal forces specified for joint. This system architecture
is better suited for mobile manipulator systems as a redundant system is controlled using a
dynamic coordination strategy, allowing its full bandwidth to be used. Similarly, Ha et al. support
the use of decentralized planners in a closed-loop multi arm motion planner in which a
decentralized policy is used to train and control a single robot arm to reach its target
end-effector pose [45]. Multi-agent reinforcement learning (MARL) is used to learn a
decentralized motion planning policy to cooperate using a rewarding system once all arms have
reached their individual goal configuration. In this system, the use of a decentralized planner
allows the cooperative training of a closed-loop, multi-arm motion planner that can easily scale
with the number of robot arms.

As opposed to centralized planners, a decentralized architecture is more adaptive to unknowns
and dynamic environments. While a decentralized system adds reliability, flexibility, and
robustness, designing a controller for more complex tasks requiring simultaneous arm motion

12



may be challenging. When paired with a coordination method such as implicit dynamic
coordination, decentralized motion planners must efficiently communicate to avoid collisions
while cooperating to reach their goal, while only having control of their individual path.

2.4 Velocity Obstacles

Velocity Obstacles (VO) or velocity control uses the notion of computing collision-avoiding
velocities with respect to other agents, specifying velocities that will direct an agent towards its
goal [55]. This approach uses both the current position and velocities of other robots to compute
their trajectories in order to avoid collisions in a dynamic environment.

Fiorini and Shiller present a dynamic robot motion planning method adding a time dimension to
the robot’s configuration space, knowing the bounded velocities and path of the obstacles [56].
Robot velocities are chosen outside of the Velocity Obstacles, represented by the set of robot
velocities potentially resulting in a collision with a given obstacle moving at a certain velocity at
some future time. The trajectory is initially computed using a search tree of feasible static
avoidance maneuvers [57]. Dynamic obstacles are handled by considering a first-order
approximation of robot velocities that would potentially cause collisions with a dynamic
obstacle within a future time range [56][58][59]. This method is demonstrated with point and
disk type robots as well as for automated vehicles in a highway scenario. Berg et al. introduce
the acceleration-velocity obstacle (AVO), letting a robot avoid collisions with moving obstacles
with a constrained acceleration. The concept of reciprocal collision avoidance is used, letting
each robot take half of the responsibility of avoiding robot-to-robot collisions [55][58][60]. This
approach is designed for holonomic robots and non-holonomic robots such as cars.

The combination of a motion planner to avoid static obstacles and Velocity Obstacles to avoid
dynamic obstacles form a good pair in a dynamic MRS system. To adapt to a 3D environment for
bilateral manipulation, an additional dimension would need to be added into the velocity
collision avoidance problem, adding additional degrees of freedom and uncertainties. The model
should be adaptable to a task oriented environment and support various robot actions or edge
cases. Controlling the velocity of each dynamic agent rather than changing their paths to avoid
dynamic obstacles in an MRS would ideally create minimal disturbances in each component’s
initial trajectory.
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Chapter 3
Proposed Execution Model

3.1 Overview

Our method builds upon the concept of Velocity Obstacles as a means of solving dynamic
collisions while minimizing disturbances to the path generated by a motion planner. As
decentralized architectures are more adaptive to unknowns in a dynamic environment, we
implement each arm as a state machine to control their own path individually. A combination of
static and dynamic coordination is implemented in our framework to generate collision-free
paths around obstacles during the planning phase, and handling collisions dynamically as they
are detected.

The goal of this work is to present a flexible and robust path and motion planning framework for
bilateral manipulation in a task specific environment. We demonstrate the benefits of using
velocity control as a dynamic collision avoidance mechanism adapted for the execution of
integrated tasks in a constrained pick-and-place simulation. The assignment of a multilateral
task to a velocity obstacle method poses multiple new challenges which a velocity obstacle in
continuous motion would rarely encounter. Such cases include the approach of a common goal
location, as well as specific delays to execute certain actions in the context of the task. To provide
an adaptable solution to a variety of robotic tasks, our framework must handle the various cases
that may occur, including static obstacle avoidance, arm-to-arm collision detection, task specific
delays, common goal trajectory planning, and deadlocks. A high level overview of the system
components is shown in Figure 3.1.1.

Path Generation Collision Check Velocity Control

h v

( Execute Path

L

Deadlock Check

Figure 3.1.1: System components overview and interactions
3.2 System Architecture

Finite State Machines (FSMs) are used as a base structure to coordinate a single arm movement
for a given task. As a decentralized architecture is used, each arm is assigned to its own FSM,
planning and controlling their own individual path and task execution. We simulate six states to
run a pick-and-place subtask. Arms first start in a planning state, in which optimal paths are
generated using a motion planner, and collision checks are conducted. Once the path is executed,
the arm approaches the nearest object, grabs the object, introducing a short delay, then
recalculates its path to the bowl to drop the object and introduces another delay. The combined
PSM state machine architecture is shown in Figure 3.2.1. A hybrid static and dynamic collision
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avoidance mechanism is integrated in this system as a means to coordinate and control each
arm’s usage of environment space and resources. We handle real-time dynamic collisions while
employing static coordination to set basic rules for the environment.

Planning

Figure 3.2.1: PSM1 and PSM2 basic pick-and-place state machines and task states

In order to use the arm state machines in Figure 3.2.1 while minimizing the probability of
collisions, we integrate our motion planning and collision avoidance framework in the
pick-and-place task. Each component of the algorithm is developed in isolation then gradually
integrated after evaluating each component’s performance.

Our proposed algorithm functions in real-time. The sampling based planner RRT* is used to
calculate optimal and collisionless paths around static obstacles [61][62]. In the planning state,
the two paths are inspected interactively at every point in time to check for possible collisions.
Following collision inspection, there are three possible outcomes:

1. No collision detected
2. A possible collision detected along the path
3. Apossible collision detected ata common goal location

In the case that no collisions are detected, arms proceed to their respective goal without any
change in velocity or trajectory. Once the first arm arrives at its destination, we compute a new
path and once again check for possible collisions with the remaining path left of the second arm.

A possible collision detected along the path in the second case implies that there exists a list of

points in both paths which are under an arbitrary threshold at the same timestamp. The
algorithm adjusts the velocity non-linearly to avoid the collision with minimal disturbance to the
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initial trajectory and velocity. Once the fast arm reaches the velocity reset point, set as the first
collision point in the path, we reset the velocity and check for collisions again.

The third case describes the situation in which both arms are approaching the same goal
location, in our case the bowl. While this should be considered a possible collision, it is not
necessarily detected as such, as it is not guaranteed that the two arms would arrive at the same
time. However, the first arm arriving at the bowl may take a certain amount of time to complete
a designed action before leaving the resource, causing the second to possibly collide at the goal
location.. One again, we rely on a velocity control system to ensure that arms will never meet at
the bowl location, relying on an emergency stop as a final resort to prevent an imminent
collision. A flow chart describing the algorithm is shown in Figure 3.2.2.

»| Path Generation Path Generation

Ne Collision Collision Check

¥

Resource Free

3 No—T
Execute Path Collision

Velocity Control

Safety Radius Check Execute Path

Common Goal

Unsafe

Mo

Arm Arrives at
Collision Point

Emergency Stop Slow Arm

“Deadlocl Deadlock Check No Deadlock:

Fast Arm: Velocity Reset

Figure 3.2.2: Algorithm feature flow chart

Common complications that may occur in decentralized concurrent systems are deadlocks.
Deadlocks in our system may occur due to arms attempting to approach the same location and
failing to coordinate its use, resulting in a stalemate caused by the algorithm’s restrictions.
Emergency stops may be used to assist in handling any unforeseen failures in the algorithm such
as deadlocks. We use the number of emergency stops made in a row as a detection mechanism
for deadlocks, before recalculating a different path to break the deadlock.
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3.3 Motion Planning

Rapidly Exploring Random Trees* (RRT*) is a sampling based motion planner optimizing its
predecessor, RRT, to achieve a shortest path [57][63]. The premise of any RRT based algorithm
consists in randomly generating and connecting the nearest node. For every vertex generated,
we check that the vertex does not encounter an obstacle. The algorithm comes to an end once a
node is generated within the goal region or a solution is not found within a time limit.

We operate in a configuration space with a given state space denoted by Q R" where n is the
dimension of the search space n € N. Obstacles are represented in the search space
represented by Qobs C @ and unoccupied space is represented by Q = Q/Qobs. The goal

free with the initial configuration as q,. < Q q

q,,q aTe inputs to the planner by the algorithm, as well as the placement of obstacles Qobs. RRT

free
configuration is denoted by oy cqQ free” Dinit

must find a collision free path from q,, t© 4oy within Qfm within a set time limitt € R while

minimizing distance cost.

The RRT planner’s main objective is to find a valid path Py [0, n] if one exists in eree C Q such

that pf(O) =q_.CcQ

init free

and pf(n) € 90l within ¢t € R and return false if a path cannot be

computed.
RRT implements six main functions to build and compute the search tree:

e Sampling: The Sample function randomly samples a state q..4€ Q . in a free space in

fre
the environment.

e Nearest Neighbour: Nearest finds the nearest neighbouring node from T = (V,E) to

using a cost function.
qrand g

e Steering: The function Steer solves for the control input u: [0, T] driving the system
from q(0) = q. ., q(T) =¢q along the pathg: [0,T] = Q.

nearest

e (ollision Check: ObstacleFree checks whether a path q: [0, T] = Q lies in obstacle-free
space q € eree forallt € [0, T].
e Insert Node: InsertNode adds q,,, t© V in the search tree T = (V, E), connecting to its

parent neighbouring node q. ..

The RRT planner tends to create irregular paths in nature as nodes can only be attached to their
nearest neighbour, often resulting in a sub-optimal trajectory. These irregularities are addressed
by RRT*

The RRT* planner’s main objective is to build upon RRT to finding an optimal path P [0,7n] in

Q... cQ such that the path cost Cost(pf*) is a minimum.

fre

Cost(pf*) = {minpSCost(pf): P € f} (3.1
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All of RRT’s previously defined properties are inherited. RRT* further introduces two more
functions into the search algorithm:

e Rewiring: The Rewire function checks that the cost of the set of nodes q.,.1s less when
passing through a.. than that of its last cost. If the cost is found to be less, the parent

node is changed to Qo

® Choose Parent: ChooseParent finds the optimal parent node q,,, among the nearby

nodes.

The RRT* Algorithm is described in Algorithm 1.

Algorithm 1 7 = (V. F) «+RRT*(g;ni)
T + InitializeTree()
T « InsertNode(O, ginit, T)
fori=0toi= N do
Ginit +— Sample(i)
Gnearest < Nearest(T, grand)
(fhu?u'- L'rnmr'} — *";"ﬁﬁ-r{"fncarr-ﬁf- Jrand)
if Obstacle free(q,.,,) then
Onear < —\T"':"”'(T- Unew: I'H
Gmin < (_‘h(}(}sﬁpur(—j ”"‘(anar- ffr?carﬁst-(a’n(u')
T + InsertNode(gmin. Gnew. 1)
T + Rewire(T, Gnear Qmin. Gnew)
end if
end for
return T

Algorithm 1: RRT* Algorithm description

The RRT and the optimized RRT* algorithms can be visualized in Figure 3.3.1. The blue lines
display the explored states with the grey prisms representing environment obstacles. The green
path shows the raw RRT path leading from start to goal state connected to neighbouring nodes
and the orange line shows the the valid RRT* computed path from start state to goal state.
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Figure 3.3.1: RRT (green) and RRT* (orange) generated paths.

3.4 Collision Detection

The arm paths at default velocity are represented as a set of equidistant points forming a
polyline. As the probability of two polylines intersecting at exactly one point in a 3D space is
very low, we define a possible collision as a list of points in the two paths, at which the euclidean
distance is under a certain threshold. To detect potential collisions on two paths, we use a
method of collision prediction using the known initial velocity v, and distance traveled for every

time steps .

To compare paths of different lengths, we must first take the shortest path set length ro.

between Path 1 as P1 and Path 2 as PZ:

roo= min{rpl, rpz} (3.2)

Then starting at time t = t):
C = {P ()| norm(P (), P,(t)) <3 } (3.3)
where Cn is the set of all potential collision points in Path n in which the euclidean

distance of Arm 1 and Arm 2 at time t is less than a chosen collision threshold 86.

We proceed to check for collisions in the paths at every time step t = t + T until:

P(t) =P @w/S*r )) (3.4)

min

where S is the current path step size.
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3.5 Velocity Control

As the raw polylines initially generated by RRT* are not constructed of equidistant points, we
must first process the paths such that at every time step z, arms move forward by a constant
initial step size SO, letting the arms move at constant initial velocity V(t) = v, For the current

arm velocity at any time:

V(t) = S*r (3.5)

To interpolate the raw path with equidistant points, the n-th discrete difference is first
calculated along every axis. For instance, the first difference would be given by
da = a[i + 1] — a[i] along a given axis a.

For every point i in a path P[i] = (x[i], y[il, z[i]) of length I
dx[i] = x[i + 1] — x[i]
dy[i] = y[i + 1] — y[i] (3.6)
dzli] = z[i + 1] — z[i]

We then calculate the cumulative sum of the euclidean distance:

A =dx + dyt + d° (3.7)
U=y A (3.8)

Using the maximum value of u, an array k of evenly spaced values at a step size of SO is generated

within the interval [0, max{u}]. Finally, we linearly interpolate the raw path for monotonically
increasing sample points and return a one-dimensional piecewise linear interpolant with given
discrete data points (k, u) evaluated at x, y, z.

Equidistant points are interpolated on the raw RRT* path such that the step size S between
points in our path remains a constant value as shown in Figure 3.5.1, hence producing a
constant velocity.
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Figure 3.5.1: Processed RRT* path (red) at constant velocity and raw RRT* path (blue)

Before adjusting arm velocity to avoid a detected collision, the arm to adjust must first be
selected to minimize the probability of collision, by maximizing the distance between arms as
quickly as possible. Therefore, the algorithm chooses to slow down the arm whose goal is
nearest to the other arm’s current position. This lets the arm with the goal furthest from the
other arm move away, gradually gaining distance and reducing chances of any further
interactions between the two arms.

For instance, in a case such as in Figure 3.5.2, the blue arm'’s velocity is decreased in order to
allow time for the green arm to clear the collision area, moving to a point away from the blue
arm. If the green arm'’s velocity were to be decreased instead, the blue arm would continue to
approach the green arm, potentially resulting in an emergency stop or a deadlock.

Figure 3.5.2: Arm 1 (blue) slowing down and moving towards bowl while Arm 2 (green) clears
the area, moving away from Arm 1.

21



Having chosen an arm to decelerate, a Velocity Function is now integrated and applied to the
arm’s path. The purpose of the Velocity Function is to transform the path by interpolating points
as needed with constant or varying step sizes in order to control the arm velocity along the path.
We use a nonlinear Velocity Function to transform the path non-linearly. We assume that an
ideal nonlinear function would allow the arm to continue moving near maximum velocity, only
slowing down as necessary once closer to the collision point. A nonlinear function fitting this
description is the natural logarithm as shown in Figure 3.5.3.

Z, [m]

Figure 3.5.3: Arm path with equidistant points at constant velocity (light blue) and adjusted path
transformed using a natural log function (red), where the first point represents the arm’s start
position, and the last point represents a collision point.

The arm gradually decreases in velocity, stopping at its collision point in the event that the fast
arm does not pass its collision point in time. Letting the arm decelerate non-linearly allows
minimum disturbance to the arm state, maintaining speed for as long as possible while avoiding
a possible collision. An instance of the resulting velocity time graph showing a gradual decrease
as a result of the path transformation is shown in Figure 3.5.4.
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Figure 3.5.4: Velocity decay using a natural log function to transform arm path

22



The path is fit to a natural logarithm function with the step size S between points in our path
changing non-linearly as such:

s =K1-¢e"h (3.9)

where K is the gain of the log equation and T is the time constant. We consider the first
order system steady state standard that after 47, we reach within ~2% of the asymptotic value
[64], where 2% is the multiplier m. This indicates that after 4T, steady state is considered to be
reached at ~98% of the gain K.

To shape the Velocity Function as a gradual velocity decrease, we solve for the final distance
value p that we want to reach at 4T steady state by setting K = 1 + m (in the case of the first
order steady state standard, ~102%) of .

Knowing the initial velocity v, we can calculate the initial path step size SO using Equation 3.5

and use t =1 and K = 1.102p to form the following equation and solve for T:

T =1/In(1 - S /K) (3.10)

K is a parameter that may be changed as needed if we would like the arm to reach the final point
in the path sooner than 4T or later than 4T *. To control the gain K, we can change the value of
the multiplier m and calculate K as such:

K= p(l + m) (3.11)

A higher multiplier results in a steeper velocity decrease towards the end, while a lower
multiplier results in a more gradual velocity decrease.

3.6 Common Goal Location

Using a velocity obstacle method in a task driven concurrent system reveals many challenges.
While two arms requiring the use of a single mutually exclusive resource means a possible
collision, it is not necessarily detected as such, as it is not guaranteed that the two arms would
arrive at the same time. However, due to the nature of integrated tasks, it is possible that the arm
will idle for a certain amount of time at the goal location to complete an intended action, such as
opening the manipulator jaws to drop an object into the bowl. Therefore, we set a collision point
at the goal location as shown in Figure 3.6.1, and adjust the velocity to slow down the furthest
arm, giving priority to the nearest arm to use the resource. As the collision is not considered
avoided as long as both arms require the use of the same resource, the velocity is only reset to
default once the arm frees the resource and begins executing its next path.

! The observation of controlling the gain to reach the last path point sooner or later than 4T, allowing the
control of the steepness of the velocity curve, was provided by W. Van Dam (2021)
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Figure 3.6.1: A collision point (cyan) is set on the goal location. Arm 1 (red) gets priority access
to the bowl while Arm 2 (light blue) decreases in velocity until Arm 1 no longer needs the
resource

3.7 Deadlock Resolution

Deadlocks are a possible occurrence in concurrent systems using mutually exclusive resources.
Although deadlocks are a relatively rare occurrence, a deadlock resolution mechanism should
still be included in the system to handle such a case. In our environment, any point in space is
seen as mutually exclusive, as we must avoid collisions between the two arms. If arms are
moving directly towards each other, collisions cannot be avoided using solely velocity control, as
no matter the velocity, arms will continue to approach each other until reaching a stop at the
first collision point. The fast arm will not be able to compute a collisionless path and remain

stuck in a planning state, while the slow arm will simply stop at the first collision point until the
fast arm clears the first collision point.

In order to break a deadlock, its occurrence must first be detected. As a deadlock is defined by
both arms reaching a stalemate and being unable to move, we check at every sampling period
whether the slow arm is in a state of emergency stop. If the emergency stop persists for a
predefined continuous period of time, a deadlock is detected.

One of the most common methods of deadlock resolution is “cancelling” and restarting a
process. We implement this method by resetting the fastest arm'’s path and recalculating a path
around the slow arm. To force the motion planner to calculate a path around the stationary slow

arm, an imaginary boundary box is generated to enclose the slow arm and represent it as a static
object, as shown in Figure 3.7.1.
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Figure 3.7.1: A deadlock is detected and a boundary box is generated around Arm 2 (green). Arm
1 (blue) resets its current path and computes a new path around the boundary box.

In a robot environment such as the da Vinci Surgical Robot, this box would need to enclose the
entirety of the arm surface to minimize the possibility of any further deadlocks occurring on any
part of the arm in this path.

As the RRT* motion planner attempts to find an optimal shortest path by nature, sections of path
computed may lie directly along the surface or edges of the box. If the dimensions of the box
were to be less than the collision detection range, collisions are likely to be detected early along
the new path. As the arms are already near together, this may result in the slow arm reaching its
collision point almost immediately, once again going into a state of emergency stop. The
deadlock breaking process would repeat until arms are at a sufficient distance for a new path to
be calculated without a collision detected.

In order to avoid these possible complications, the boundary box is set with dimensions equal or
greater to that of the collision detection range r. Assuming the box is generated around an arm
located at its centroid, we define the box dimensions to be x = r, y = r, z = r. An excessively
large boundary box would also be inefficient, resulting in a lengthier path than necessary and
increasing the tree search load on the RRT* motion planner. Therefore, we set the box
dimensions at a value arbitrarily near that of the collision detection range, at
x €[r,r+ 0.05], y € [r, r + 0.05], z € [r, r + 0.05].
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Chapter 4
Evaluation

4.1 Overview

Our motion planning and collision avoidance framework is evaluated using a pick-and-place task
simulated in a Python environment, with arm trajectories and objects plotted in real-time on a
3D figure. Using this method, velocity changes and planned trajectories for each arm can be
clearly observed, allowing more flexibility in testing and visualizing different parameters.

To demonstrate the robustness and effectiveness of the collision avoidance framework, three
subsets of evaluations are conducted. The first type of evaluation consists of conducting
experiments supporting the selection of certain features or parameters to reinforce the
algorithm. Different functions are tested to decelerate an arm as well as the optimal position
where the arm should return to its original velocity. The second type of evaluation is done by
conducting stress tests by forcing the simulation into edge cases such as multiple intersection
points, common goal locations, and deadlock resolution, and observing its behavior. This series
of experiments demonstrates the framework’s responsiveness and collision handling in a
dynamic environment. The final evaluation compares the performance of our proposed
execution model with parameters chosen according to the preceding evaluations’ results, to a
state of the art execution model in a pick-and-place simulation. We use Abdelaal et al's
hierarchical state machine (HCSM) and Independent parallel FSM execution models as
benchmarks [15].

4.1.1 Performance Metrics

We quantify the performance in the experiments described earlier using a combination of the
following metrics:

e Completion Time (s): measures the total execution time in seconds from the starting
position of the arms to the designed goal position for each trial.

e Number of Collisions Avoided (Velocity Adjustments): measures the total number of
times that arm velocities are adjusted in order to avoid a possible collision, including
common goal location adjustments, and detected collision adjustments. This metric is a
simple benchmark to demonstrate the benefits of our algorithm and observe the number
of collisions that would occur otherwise. Velocity adjustments resulting in deadlocks are
not counted.

e Number of Emergency Stops: measures the number of times that arms must reach a
stationary state after slowing down to avoid a collision, due to entering the other arm’s
safety radius. As we attempt to keep the parallelism aspect of the multilateral task, the
number of stops should be minimized. This is also a measure of the suitability of the
velocity function to choose a velocity at which arms will move continuously. Each
deadlock encountered only counts as a single emergency stop.

e Number of Path Recalculations (Resolved Deadlocks): In the case when arms are
moving towards one another and the collision cannot be avoided by controlling the
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velocity of the arms, we attempt to recalculate the fast arm’s path once the slow arm
reaches a state of emergency stop and a deadlock is detected. If a valid path is found, the
deadlock is resolved. This metric measures the number of successful path recalculations
leading to the resolution of a deadlock, representing the complexity of the task set up.

Number of Unresolved Deadlocks: measures the number of unsuccessful path
recalculations leading to both arms reaching a stalemate, unable to move without
colliding.

Number of Collisions: measures the number of collisions between the two arms or
between an arm and the environment.

Overall Task Error: combines the metrics of the number of collisions and unresolved
deadlocks, both of which are represented as critical failures in the system that must be

avoided.

4.2 Parameter Tuning

Algorithm parameters refer to the constants used in our collision avoidance framework. The
performance of our algorithm is dependent on its selected parameters, as evaluated according to
the performance metrics described in Section 4.1.1. Experiments were conducted to compare a
variety of parameters in order to choose the most suitable options/values, such as the velocity
function used to adjust arm velocity, and the velocity reset point used to decide whether to reset
velocity at the first or last collision point. Environment parameters represent the dimensions
and positions of objects, and are chosen such that a fair comparison to a state-of-the-art
multilateral task coordination model can be made against our proposed framework.

Table 4.2.1 and Table 4.2.2 provide a summary of the algorithm and environment parameters.

Parameter

Definition

Collision Detection Range

Defines the euclidean distance between two path points at
which a collision can be detected in the planning state of the
arm state machine.

Safety Radius Defines the distance between the current positions of the two
arms at which the slow arm must do an emergency stop until its
velocity is reset.

Pause Time Defines the idle time required for an arm to drop or pick up an

object. It is selected to match the same action in the HCSM
pick-and-place coordination model presented by Abdelaal et al.
[15], against which a performance comparison is made.

Boundary Box Dimensions

Defines the invisible static obstacle enclosing the slow arm
during deadlock resolution, allowing the fast arm to attempt
planning a valid path around it. Box dimensions are measured
using centroid distance to the outer face, and is chosen
according to the collision detection range.

Default Velocity

Defines the initial velocity at which both arms move and are
reset to after collision is avoided. This velocity is the same for
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both arms and is chosen to be the maximum velocity allowed by
the robot.

Velocity Function

Defines the type of velocity adjustment used to decrease arm
velocity, including Natural Log, Quadratic, or Step.

Velocity Reset Point

Defines the collision point in an array representing all points in
space at which a collision is detected. Arm velocity is allowed to
be reset either at the first or last point of the set.

Table 4.2.1: Algorithm parameters definition

Parameter

Definition

Object Positions

Objects may be generated within a certain distance on the table around
the bowl location. Range is selected to match the same positional range
in the HCSM pick-and place coordination model.

Bowl Position

Bowl is placed at a fixed position on the table, selected to match the
same location in the HCSM pick-and place coordination model.

Home Position

Defines the start position of each arm, selected to match the same
location in the HCSM pick-and place coordination model. Once an arm
has picked all of its assigned objects, it should go back to its start
location. Both arms having arrived at home position constitutes the
end of the task execution.

Table 4.2.2: Environment parameters definition

4.2.1 Experimental Setup

The Overall Performance Comparison with alternative task coordination models in Section 4.6
will be conducted with the same algorithm and environment parameters. Therefore
environment parameters have been chosen to match up to scale with the pick-and-place task
experiment with the da Vinci Surgical Robot arm home positions, objects positions, and table
size. Our pick-and-place Python simulation environment is shown in Figure 4.2.1, while the
pick-and-place task with the da Vinci Surgical Robot simulated in V-REP [11] is shown in Figure
4.2.2. Optimal velocity function and reset point will be selected in this experiment to be used in
Section 4.6. The Parameter Tuning experiments in Sections 4.2.2 and 4.2.3 were conducted using
the following parameters in Table 4.2.3 over 20 trials.

Detection Range (m)

Safety Radius (m) | Default Velocity (m/s) | Boundary Box Size (m)

0.05

0.03 0.32 [0.06, 0.06, 0.06]

Table 4.2.3: Deadlock resolution experiment algorithm parameters
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The experiment environment was set up according to the pick-and-place environment in the
HCSM coordination model as follows.

The Home positions for Arm 1 (Blue) and Arm 2 (Green) were fixed at [0.0, 1.0, 2.0] and
[0.0, -1.0, 2.0] respectively.

e The Red bowl was positioned at [-1.0, 0.0, 0.8]

e Two Red objects were generated at random at x € [-0.5, 1.0], y € [-1.5, 1.5],and z =
0.33

e The table top dimensions are defined as 0.38x5.56x0.3 m
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Figure 4.2.1: Main pick-and-place Python environment setup. Bowl is shown as a big red circle,
Arm Home positions in dark green and blue above the bowl, and objects of different colors
generated at random on the table.

Figure 4.2.2: V-REP pick-and-place task simulation with the da Vinci Surgical Robot. Bowl is
shown in Red and objects are represented as small water molecules generated at random on the
table.
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4.2.2 Velocity Function

As described in Table 4.2.1, the velocity function represents the type of transformation applied
to decrease an arm’s velocity in order to avoid a detected collision. This experiment compares
and tests three velocity functions to find the best one for our collision avoidance framework.

The first velocity function is a step function reducing the path velocity by a constant value. The
default velocity matching the da Vinci Surgical Robot’s pick-and-place simulation was defined as
V'=0.32m/s, and can be implemented in our simulation by calculating the path point step size
using a known time step of 7 = 0.0005s. The step size S of our path points is defined as:

S =V/r (4.1)

This signifies that at every time step 7, the arm moves to the next point in its path, distanced at S
from the previous. The path step size was calculated as S = 0.00016m with the paths retrieved
from the RRT* algorithm interpolated accordingly. An arbitrarily shorter path step size of
0.00013m was chosen to adjust arm velocity in case of collision, resulting in a reduced velocity
of 0.26 m/s. An instance of the resulting velocity time graph showing a velocity decrease by a
constant, then a velocity increase to its initial value as a result of the path transformation is
shown in Figure 4.2.3.

Step Arm Velocity Decrease by Time
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Figure 4.2.3: Velocity Step function. Arm velocity is decreased by a constant value for 2 seconds
before returning to its initial velocity.

The second velocity function transforms and interpolates the path to fit a Quadratic function.
The use of this function allows the arm to continue moving seemingly at default velocity, only
slowing down noticeably once much closer to the collision point. The arm then shows a steep
decrease in velocity, stopping just before its collision point in the case that the fast arm does not
pass its collision point in time. Using a non-linear method of velocity adjustment allows
minimum disturbance to the arm state despite a collision being detected, only reducing the
velocity as needed to avoid the collision. The step size S between points in our path changes
non-linearly as such:
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S=ax + bx + ¢ (4.2)

where x represents an iterated point of the final transformed path of length n, and g, b,
and c are constants calculated as follows:

b = 2u — \/4,12 —4uS + 2 (4.3)
a=S-b (4.4)

The parameter z represents the final path step size from P[n-1] to P[n] where n is the set length
of the final transformed path. As we expect the slow arm to come to a stop upon reaching the
collision point, z = 0 in our case. The parameter u represents the upper bound of the path which
is the total distance traveled along the path at the last path point, taken by calculating the
cumulative sum of the distance of each point. The default step size is denoted by SO.

The equations constants a and b are derived from the generic quadratic equation:
am— 1)’ +bn-1)+c=pu-z (4.5)
where the set length of the final transformed path is calculated as follows:

n=(z- b)/[Z(S0 — b)] (4.6)

Equation 4.2 is applied for every point x in range of the final transformed path of length n. An
instance of the resulting velocity time graph showing a Quadratic velocity decrease to a stop as a
result of the path transformation is shown in Figure 4.2.4.
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Figure 4.2.4: Velocity Quadratic function. Arm velocity is decreased quadratically for 3 seconds
before coming to a full stop once the first collision point is reached.

The last velocity function in our evaluation is another non-linear interpolation, fitting the
Natural Logarithm function defined in Section 3.5. Similarly to the Quadratic function, the
interpolation of the arm path using a Natural Logarithm creates minimal initial disturbance to
the velocity of the arm, only noticeably decreasing in speed once closer to the collision point.
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However, the decrease in velocity is more gradual in nature and occurs visibly earlier than in the
Quadratic interpolation.

The three velocity control functions are tested in conjunction with the velocity reset point
parameter in Section 4.2.3 to optimize the final algorithm.

4.2.3 Velocity Reset Point

In the planning state of the arm state machine, a path is computed using the RRT* motion
planner, followed by collision checking along every sampled point in this path. In this algorithm,
an intersection is defined as an array of points at which the first arm’s path euclidean distance
from the second arm’s path is within the collision detection range. As defined in Table 4.2.1, the
velocity reset point represents the collision point in the array at which arm velocity is reset to its
initial velocity once a collision is avoided. This parameter can be set as the first or last point of
this array of collision points. Figure 4.2.5 displays an example of an array of collision points as a
short trail of cyan points along each arm’s path.

Figure 4.2.5 An array of collision points shown as a cyan trail along each arm’s path (orange) in
the main pick-and-place Python simulation

We test and compare the performance of our framework when using the first collision point of
the array as our velocity reset point, against using the last collision point of the array.
Furthermore, both options will be used as parameters to test each velocity function type in
order to determine the optimal combination of parameters. These parameters will be used in
the Overall Performance Comparison of our framework and a state-of-the-art model in Section
4.4.
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4.2.4 Results

The Average Execution Time results observed for parameter tuning of various combinations of

velocity functions and velocity reset points after 20 trials are shown in Table 4.2.4.

Step Function

Quadratic Function

Natural Log Function

First Collision Point

13.58 £ 0.41s

11.20 £ 0.62 s

10.52+0.59s

Last Collision Point

13.31+£0.37s

1298 +£ 0.51s

12.64 £ 0.48 s

Table 4.2.4: Average Execution Time per trial by Velocity Function and Velocity Reset Point

A comparison of the three velocity functions using the first collision point as the velocity reset
point parameter in the algorithm is shown in Figure 4.2.6. The non-linear velocity control
functions performed noticeably better than using a step function to decrease the velocity. While
the number of unsolved deadlocks and paths recalculated were approximately the same, the
natural log function had a lower number of emergency stops, showing a better affinity for this
model.

The three velocity functions were again compared in Figure 4.2.7, using the last collision point
as the velocity reset point parameter in the algorithm. Once again, the both nonlinear functions
showed similar results, with the Natural Log function showing a lower number of emergency
stops.

Velocity Function Comparison Using First Collision Reset Point

HStep M Quadratic M Natural Log
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Figure 4.2.6: A comparison of the three velocity control methods with the Velocity Reset Point
parameter initialized as the first collision point
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Velocity Function Comparison Using Last Collision Reset Point
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Figure 4.2.7: A comparison of the three velocity control methods with the Velocity Reset Point
parameter initialized as the last collision point

Being the highest performing method of velocity control in both first and last collision reset
point, the two latter settings were compared using the Natural Log Function. As shown in Figure
4.2.8 The last collision reset point parameter suffers from a low success rate in recalculating
paths, and a large number of unsolved deadlocks, occurring 50% of the trials.

Collision Reset Point Comparison Using a Natural Log Velocity Function
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Figure 4.2.8: A comparison of Velocity Reset Point positions using a Natural Log Function as
Velocity Control parameter

A plausible explanation would be the failure to consider the case of deadlocks, in which arms
approach one another. As collision points are detected and set as the last collision point in the
arrays, the slow arm will continue to approach its last collision point at which it plans to stop,
bringing it closer to the fast arm. While designed with intent, there is no guarantee that the fast
arm will reach its collision point before the slow arm. This leads to a higher risk of emergency
stops caused by entering arm safety radius, and difficulties in recalculating trajectories to break
deadlocks as discussed in the deadlock resolution evaluation in Section 4.3.3. Therefore, setting
the velocity reset point parameter as the first collision point would give the optimal results in
the main collision avoidance algorithm.
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4.2.5 Discussion

This section discussed and evaluated different combinations of parameters to optimize the final
motion planning and collision avoidance algorithm. The tuning of velocity functions and velocity
reset points were explored, however there exists multiple other parameters that may be
adjusted to optimize the algorithm. For instance, the collision detection range or safety radius
could be increased or decreased depending on the desired sensibility of the detection algorithm.
Furthermore, the velocity function parameters could be further tested. The Natural Log function
can be adjusted by trying different multiplier values in order to tune a more or less gradual
decrease in velocity. As the majority of parameters are currently determined by trial and error,
the use of neural networks to find optimal algorithm inputs or even an optimal velocity function
for the model could be explored in future work.

4.3 Stress Testing
4.3.1 Multiple Intersections

Overview

As the RRT* planner converges to an optimal solution in terms of the state space distance [57],
the initial path computed for each arm is likely to be as simple as possible without any
unnecessary deviation. However, when implemented in an environment with multiple obstacles,
the planner may be forced to take detours, resulting in overlapping paths. These detours are
made in order to avoid colliding with static obstacles while minimizing the total distance to the
goal configuration. As the pick-and-place task lacks such obstacles to force the paths to deviate
and overlap with each other more than once, this remains a less likely case. While a rare
occurrence, this proposed method aims for an adaptive and robust solution to static and
dynamic collision avoidance geared towards a variety of surgical tasks and unpredictable
environments. Therefore, accounting for this case would be beneficial for a better understanding
of the algorithm’s limitations as well as its scalability for future multilateral works.

The purpose of this experiment is to observe the collision avoidance behavior when forced into a
case with paths intersecting twice on their way to their goal configuration.

Four distinct types of collisions are taken into consideration in a double intersection problem:

e Successive: Only a single collision is detected initially at the first intersection as shown
in Figure 4.3.1. Once paths are executed, the first collision is avoided by adjusting arm
velocity. Once the fast arm reaches the first collision point, the slow arm’s velocity is
reset and paths are once again inspected for collisions. A new collision due to the change
in timing is now detected at the second intersection seen in Figure 4.3.2 and handled
accordingly.

e Resolved: A collision is initially detected at both intersections. Once paths are executed,
the first collision is avoided by adjusting arm velocity. Once the fast arm reaches the first
collision point, the slow arm'’s velocity is reset and paths are once again inspected for
collisions. No collision is detected, as the second collision is avoided due to the change in
timing. The arms proceed toward their goals at initial velocity.
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Single: Only a single collision is detected at one of the intersections as shown in Figure

[ ]
4.3.1 in the case that no collision is detected at the second intersection. The other
intersection poses no collision risk as arms cross the point at different timestamps.

e None: No collision is detected at either intersections, arms proceed through both

intersections without any velocity changes.

X [ 8 e
] 10
/ 12 0
Figure 4.3.1: Single Collision or potential Successive Collision detected between Path 2 (Blue)
and Path 1 (Orange), as arms (Red) approach the single collision point (Cyan). We do not know
whether a second collision will be detected at the second intersection point yet.
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Figure 4.3.2: Successive Collision detected between Path 2 (Blue) intersects Path 1 (Orange),
when arms (Red) pass the first collision point (Cyan)
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Experimental Setup

As the case of a double intersection may be challenging to reproduce consistently in a
pick-and-place simulation, we define the problem in a large empty space to allow more collision
room. To simplify the problem and reduce computing time when generating two intersecting
paths in a 3D environment, we define the first path as a polyline of 3 generated points, and the
second path as a polyline of 4 generated points. In order to minimize the risk of deadlocks
occurring due to paths moving in opposite directions, we fix the two arms’ home location near
each other at the arbitrary points of p1 = [0, 0, 0] and g1 = [2, 0, 3]. Each arm path point and line
segments are generated such that the final paths intersect exactly twice.

This path behavior is forced by setting the following rules and restrictions:

First, a line segment s1 of length /11 & [2, 18] is generated in the space by connecting two
randomly generated points, pZ and p3 in x € [0,12],y € [0, 12],and z € [0, 12]. A second line,
s2, connecting pZ2 to p1 is plotted, completing the first path, P1.

Two temporary points t1 and t2Z are randomly generated anywhere on s1 and s2 to represent the
intersection points of the second path, P2, with P1.

Another point, g3, is randomly generated in x € [0, 12],y € [0, 12],and z € [0, 12]. This point
must not intersect any lines, and represents the middle point between the two intersections.

From point g3, we generate two line segments, r2 and r3 oflength I2 € [2, 18] and I3 € [2, 18]
such that each begins at point m1 and passes through one of t1 or t2. Lastly, we connect g1 to the
nearest r2 or r3 line segment end point. In the case that one of the above steps are unfeasible,
the paths are regenerated until two valid paths intersecting twice are computed as shown in
Figure 4.3.3.

X 8
- {m) 0 . o

Figure 4.3.3: Path 2 (P2 in Blue) intersects Path 1 (P1 in Orange) at intersection points t1 and t2
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It is important to note that in this simplified two intersection simulation, an intersection is
defined as a line intersecting with another line at a distinct point, such as t1 or t2. In the final
algorithm, an intersection may be defined as an array of points at which P1’s euclidean distance
reaches a certain threshold from PZ. In a 3D space, it is unlikely that lines will intersect exactly at
one point, unless under forced circumstances such as this one.

The following parameters in Table 4.3.1 were used to tune the algorithm for this experiment
over 20 trials:

Detection Range | Safety Radius Default Velocity | Velocity Velocity Reset
(m) (m) (m/s) Function Type Point
1 0.3 0.32 Natural Log First

Table 4.3.1: Double intersection experiment algorithm parameters
Results

The results observed in the double intersection experiment for each metric are shown in Table
4.3.2. Collisions were prevented by the emergency stops triggered when the slow arm reached
the first collision point before the faster arm. A breakdown of the average execution time for
each type of intersection is displayed in Figure 4.3.4. As successive collisions detect two
collisions one after the other, requiring two velocity adjustments, the average execution time
was found to be the highest. Resolved collisions had the second highest execution time, closely
followed by single collisions, both of later only having to adjust arm velocity once. The total
average execution time of a trial was found to be 5.69 seconds, with 0.9 velocity adjustments on
average to avoid a collision in a trial.

Average Execution | Collisions Velocity Emergency Collisions
Time (s) Detected Adjustments Stops
5.69 £ 1.63 1.15+0.34 |09+0.26 0.15+0.11 0

Table 4.3.2: Average Collision data for two intersections per trial

Exectution Time by Collision Type

Average Time (s)
o = N w = w [} ~ [+-] (s

7.99

Successive Resloved Single None

Collision Type

Figure 4.3.4: Average Execution Time (s) for each category of collision in a double path
intersection problem
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With 0.15 emergency stops and no collisions, it can be concluded that the velocity control
algorithm is effective in handling two intersections in a path regardless of the number of
collisions detected in these two intersections.

Discussion

As it is an unlikely edge case with only two manipulators, the generation of two intersecting
paths has been executed by applying restrictions such as forcing a middle point to generate two
intersection points on each side. This setup method shows a limited amount of free randomized
variables with less flexibility in generating a variety of different paths. The path generation is
therefore limited to using only 3 and 4 base points to shape the paths for simplicity, and
represents only a small subset of possible paths that could be generated in this space.
Furthermore, the case of deadlocks in a double intersection simulation has not been covered, as
it would be challenging to recreate consistently. This case is even further unlikely to occur in the
main experiment with the addition of a motion planner. Deadlock in this experiment are
prevented by fixing the start position of each arm at an arbitrary point near each other.

This velocity control algorithm has only been tested in the case of two path intersections, and
does not cover the case in which a path intersects with itself, as this case is not plausible with a
motion planner. However, it may open the way for further work with multiple manipulators and
intersections.

4.3.2 Common Goal Location
Overview

In the context of a pick-and-place task, the manipulators start at a fixed home position before
approaching their assigned object, then approaching their respective destination. In this case,
both arms must drop their object into the same bowl. We assume that the bowl is not large
enough to accomodate two arms dropping their object at once, hence representing the
receptacle as a mutually exclusive resource. The arms cannot use the bowl at the same time,
therefore velocity control is once again used to slow one arm and coordinate the use of the
resource. As in a regular collision detection the algorithm would assume that the arm would not
idle at the collision point, this collision type is handled slightly differently. The slow arm’s
velocity is not reset to its initial value until the other arm leaves the resource and begins
approaching its next goal. This experiment tests the case in which the two arms are approaching
a common goal location.

Experimental Setup

As this is likely to be a common occurrence in our main simulation, a similar environment set up
and parameters were used to tune this experiment. In this experiment, two objects are
generated at random on the table, representing the arm start positions. Following the regular
arm state machine sequence and collision avoidance algorithm, arm paths are planned to the
bowl to drop the objects. A common goal location is detected as shown in Figure 4.3.5, and the
arm velocity is adjusted to ensure that arms will not meet at common goal. The first arm
arriving at the bowl will pause for a certain amount of time to mock dropping the object. The
slow arm’s velocity continues to decrease until it either reaches a stop once within the fast arm’s
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safety radius, or until its velocity is reset by the event that the other arm has left the bowl. Once
an arm has dropped its object, it approaches its assigned home location and ends its task.

The experiment environment was set up with parameters as follows:

e The Home positions for Arm 1 (Blue) and Arm 2 (Green) were fixed at [0.0, 1.0, 2.0] and
[0.0,-1.0, 2.0] respectively.

o The Red bowl was positioned at [-1.0, 0.0, 0.8]

e Two Red objects were generated at random at x € [-0.5, 1.0], y € [-1.5, 1.5],and z =
0.33

The following parameters in Table 4.3.3 were used to tune the algorithm for this experiment
over 20 trials:

Detection Safety Default Velocity Velocity Pause Time (s)
Range (m) Radius (m) | Velocity (m/s) | Function Type | Reset Point

0.05 0.03 0.32 Natural Log First 0.5

Table 4.3.3: Double intersection experiment algorithm parameters

_1 0
Y, [m] ! 2 3

Figure 4.3.5: Two arms (green and blue trails) start from their object positions (two red points)
and progress through their planned path (orange) towards a common goal (large red circle). A
common goal location is detected, shown in cyan.
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Results

This experiment aims at evaluating the algorithm’s ability to handle a case in which arms
approach a common goal location, as it is not guaranteed to be detected as a collision point. The
experimental results over 20 trials are shown in Table 4.3.4. Once again, collisions were
prevented using the algorithm’s emergency stop function as a last resort when arms enter each
other's safety radius. Despite adding a pause time at the bowl to drop the object, the slow arm’s
velocity continued to decrease until the other arm freed the common resource, hence preventing
any collision. This shows the framework’s effectiveness in the case of handling collisions
coordinating multiple manipulators as they approach the same goal location.

Average Execution Time (s) Emergency Stops Collisions

4.04 + 0.81 0.20 £ 0.08 0

Table 4.3.4: Average Collision Data for Common Goal Location per trial

4.3.3 Deadlock Resolution
Overview

Deadlocks are a much more common occurrence in our case due to the nature of the
pick-and-place task, carrying objects to a common location, then moving back to pick up another
object. This experiment evaluates our framework’s ability to detect and handle deadlocks.
Deadlocks are detected by checking the slow arm’s state at every sampling time. If the slow arm
remains in a state of emergency stop for a predefined continuous period of time, a deadlock is
detected. The deadlock is then handled by setting an invisible boundary box on the slow arm
and recalculating the fast arm’s path as shown in Figure 4.3.6.
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Figure 4.3.6: A deadlock is detected as arms are moving towards one another. Arm 1 (Blue)
computes a new path around the boundary box enclosing Arm 2 (Green).
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Experimental Setup

As deadlocks are not guaranteed to occur, this behavior is forced by restricting the generation of
Arm 1’s Start point to a certain distance from Arm 2’s generated goal point, and Arm 2’s Start
point to a certain distance from Arm 1’s Goal point. This allows the generation of two paths
moving generally toward one another, increasing the probability of deadlock.

The Start and Goal positions for Arm 1 (Blue) are generated at random within x € [-0.5, 1.0], y
€ [-1.5, 1.5], and z = 0.33. Arm 2’s Start and Goal positions are generated relative to Arm 1’s
Goal and Start positions within a distance of 0.1 m. The boundary box dimensions are defined
as the distance between the centroid to the outer face on the x, y, and z axis.

The following parameters in Table 4.3.5 were used to tune the algorithm for this experiment
over 20 trials:

Detection Safety Default Velocity Velocity Boundary Box
Range (m) Radius (m) | Velocity Function Type | Reset Point | Size (m)

(m/s)
0.05 0.03 0.32 Natural Log First [0.06, 0.06, 0.06]

Table 4.3.5: Deadlock resolution experiment algorithm parameters
Results

The results observed in the deadlock resolution experiment over 20 trials are shown in Table
4.3.6. Attempts to resolve deadlocks were made by recalculating paths after a certain amount of
emergency stops in a row. In the case where a valid path could not be found, arms remained in a
state of deadlock, unable to move and ending the simulation. The average number of unsolved
deadlocks per trial was found to be 0.20, demonstrating the framework’s effectiveness in
handling deadlocks. The number of collisions is once again zero, as we choose to favor pausing
manipulators indefinitely and resetting the system rather than letting the arms collide,
preventing unknown consequences in the surgical environment.

Average Execution Time (s) Unsolved Deadlocks

3.25+0.23 0.20 + 0.04

Table 4.3.6: Average Deadlock Data for Common Goal Location per trial

Discussion

Using a path regeneration method, the collision avoidance is shown to be predominantly
effective in resolving deadlocks as they occur. However, some cases remain when deadlocks may
not be resolved and the motion planner fails to compute a valid path.

As there is ample space around each arm to compute a new path, It is implied that failure to
compute a path occurs due to the fast arm being mistakenly enclosed inside the slow arm’s
boundary box. A boundary box lets the slow arm act as a static obstacle such that the motion
planner can compute a path around it. The fast arm may be accidentally included inside the
bounding box for a variety of inaccuracies.
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An example of such inaccuracies occurs as the boundary box set on the slow arm is defined
using the distance from centroid to outer face. The corners of the box may unintentionally
enclose the fast arm, as they protrude outside of the intended radius. We cannot simply reduce
the boundary box size as it must be larger than the collision detection range. Otherwise the fast
arm would remain unable to move, as collisions with the slow arm would continue to be
detected at its current position, within collision detection range. It is suggested that a cylindrical
or spherical boundary volume of the exact collision detection range would be preferable and
more accurate to reduce the number of unsolved deadlocks.

4.4 Overall Performance Comparison
4.4.1 Overview

Based on the metrics described in Section 4.1.1, our proposed execution model running a
pick-and-place simulation was compared against two other bilateral coordination models by
Abdelaal et al [15]. Using the experimental setup and optimized algorithm parameters
determined in Section 4.2, we compare our average execution time per trial and collision data to
that of the recorded results for an Independent FSM Parallelism Model and an HCSM Parallelism
Model. These execution models mock a simulated first generation da Vinci surgical system
patient-side cart with two PSMs and an endoscope shown in Figure 4.4.1 a), adapted in our
simplified 3D plotted environment as shown in Figure 4.4.1 b).
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a) The da Vinci simulator on V-REP b) Simplified 3D plotted Python
running a pick-and-place subtask environment running a
pick-and-place subtask
Figure 4.4.1: Pick-and-place subtask experiment set up

The Independent FSM Parallelism Model consists of two decentralized identical arm state
machines moving independently without any form of coordination. The two arms move in
parallel to execute the pick-and-place task, but lack any form of coordination or collision
avoidance. This case is used to quantify the effects of planning the motion of two arms and
avoiding collisions while minimizing disturbances to the original path. An optimal collision
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avoidance algorithm should aim to keep an average execution time near that of the Independent
FSM Parallelism Model, while removing collisions risks as they occur.

The HCSM Model consists of multiple arm sub-state machines coordinated in parallel by a main
centralized state machine as shown in Figure 4.4.2. The motion of the two robot arms are
coordinated by having one arm pick up an object as the other drops its own, at the same time.
This method does not have an implemented method of static or dynamic collision avoidance.
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Figure 4.4.2: HCSM pick-and-place model

Our proposed framework aims to eliminate all collisions while offering a more flexible system by
operating in a decentralized manner. We test our model’s robustness to deadlocks, static
obstacles, and arm collisions, by comparing its performance in the same pick-and-place
simulation as the two previous models.

4.4.2 Results

The performance results of our execution models over 20 trials compared to the Independent
FSMs and HCSM Parallelism methods are shown in Table 4.5.2. Our execution model took an
average of 10.52 seconds per trial to complete a task, a slight increase in time from the
Independent FSM model at 9.27 seconds. However, a noticeable increase in performance was
shown in the collision avoidance aspect, resulting in an overall task error 95.31% less than that
of the Independent FSM model.

Compared to the HCSM Model, our framework shows only a slight improvement in time
execution time, reducing the execution time by 11.82%. Once again, a large improvement can be
seen on the collision side, as collisions are completely eliminated, resulting in an overall task
error of 84.21% less than that of the HCSM model.
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As the Independent FSM execution does not have a coordination mechanism implemented, it is
expected that its execution time would be lower than the two other execution models. Therefore,
a slight increase in average execution time shows our success in creating an optimized
algorithm. While our framework shows only a slight improvement in time execution compared
to the HCSM Parallelism method, we include a broader range of collision measures to produce a
robust system, including both static path planning and a dynamic avoidance mechanism. This
framework arguably shows better adaptability to a variety of multilateral surgical tasks and
robotic uses as the algorithm is not bound by a specific task.

Metric Velocity Obstacle Independent FSM HCSM Parallelism
Method Parallelism Method Method

Average Execution | 10.52 4+ 0.59 9.27 £0.79 11931+ 0.72

Time (s)

Velocity 2.81+0.31 N/A N/A

Adjustments

Unsolved 0.15 4+ 0.09 N/A N/A

Deadlocks

Collisions 0 3.2+ 098 0.95+0.33

Overall Task Error | 0.15 + 0.09 3.2+0.98 0.95+0.33

Table 4.4.1: Overall performance comparison between our proposed framework, and two
parallelism methods.

4.4.3 Discussion

While the access to the bowl resource is coordinated in the HCSM model such that only one arm
is ever at the bowl location at once, this mechanism is only implemented at the bowl location.
Collisions occurring as PSMs approach objects are not handled, resulting in the majority of
collisions occurring away from the bowl. Our proposed execution model attempts to eliminate
this problem by offering a dynamic collision avoidance mechanism operating at any point in
space. Furthermore, the majority of collisions and deadlocks occur when multiple objects and
the bowl are aligned, as both arms compute similar trajectories to move towards objects and
back to the bowl.

While we combine unsolved deadlocks and collisions to form an overall task error metric, it is
noted that there could exist multiple collisions in a single trial, but only one unsolvable deadlock
per trial. In the case of an unsolvable deadlock, the trial would need to be reset to complete the
simulation. We assume that forcing the simulation to stop would be prefered to having unknown
consequences due to a collision in a surgical environment.
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Chapter 5
Conclusions

5.1 Conclusions and Future Work

Our proposed method provides an effective method of dynamic collision avoidance by using the
concept of velocity obstacle in a TMP context. The framework was simulated in a pick-and-place
task to represent the process of tissue debridement in a constrained surgical environment.
While using a velocity control approach successfully avoids the majority of collisions
dynamically, there remains task specific cases requiring the additional coverage of deadlock
resolution and common goal coordination. Several edge case solutions were explored and
evaluated using high-level criteria into a constrained collision avoidance environment to force
the behaviour consistently. The effectiveness of the framework was demonstrated in a
pick-and-place subtask and could potentially be suited for a variety of tasks in similar
conditions. Our collision avoidance framework was put through feature selection tests and
stress tests, then compared against two existing parallelism task coordination frameworks to
evaluate the overall optimized system performance.

The implementation of this framework consists in controlling the velocity of manipulators by
decreasing the speed fitted to a natural log function once a collision is detected. Deadlocks
resolving attempts are made by recalculating the path around the other arm. In the case that
deadlocks are not resolved, the arms remain frozen in place until the system is reset to its initial
state. With the elimination of collisions, we encounter complications with deadlocks, impeding
the success rate of the algorithm. It is assumed that halting the task would be preferable to the
unknown repercussions that an arm-to-arm collision may have in the environment. While
collisions are undesirable, not all collisions may be considered fatal. Methods of identifying
which collisions to avoid or ways of mitigating non-fatal collisions should they occur may at
times be more preferable than resetting the system after an unsolvable deadlock.

In this simulation, we represent the robot manipulators as two points in space rather than a
volume entity. In order to get an in-depth evaluation of the framework and its limits, this
algorithm should be adapted to a simulation with the da Vinci Robot System such as the V-REP
simulator [11], or ideally the robot itself. This would allow us to fully assess our collision
avoidance features by integrating the collision detection range and safety radius over the
entirety of the robot manipulator. Collisions should be detected over the entire arm surface
rather than solely at the manipulator end point.

The velocity control algorithm updates the arm velocity by transforming fitting its planned path
to a natural log function. Further research could be made regarding different methods of velocity
deceleration in order to choose an adequate velocity to optimize execution time. We have tested
velocity adjustment by decreasing the velocity by a constant, using a quadratic function, and a
natural log function to fit the path, however velocity control could include any combination of
functions. The algorithm could be made even more adaptive by implementing more
environment states as function parameters. The integration of recurrent neural networks (RNN)
[65] could also be used to solve for optimal algorithm inputs and velocity function for the model.
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Multiple intersections were not observed in the overall algorithm performance, however this
feature was nonetheless tested by forcing the generation of paths intersection twice. While this
behaviour may not have been observed in the context of our pick-and-place task, further work
with a greater variety of tasks may result in the occurrence of a double intersection. Increasing
the number of manipulators to improve execution time would also greatly increase the chances
of such a case as we now work with a trilateral model and the collision avoidance of three paths
at once in a constrained 3D environment. This algorithm could be further stress tested against
more than two intersection cases, with two manipulators or more.

5.2 Limitations

As our framework is simulated in a 3D plotted Python environment, this simulation provides
adequate insight of the collision avoidance algorithm with the manipulators represented as a
single point. The reported number of overall task errors may be lower than expected, as we do
not consider the entire area of the arm in this execution model.

The implementation of the deadlock resolution mechanism could further be improved to reduce
the number of unsolved deadlocks. In a simulation using a model of the da Vinci Surgical Robot,
the boundary box generated to enclose a manipulator such that the other can replan its path
around should be fitted to the arm’s shape. A shape with protruding corners such as a cube may
cause some inaccuracies such as both arms being enclosed in the box.
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